PHOTOCHEMICAL SYNTHESIS OF COMPOUNDS WITH GRAYANOTOXIN SKELETON*

M. Shiozaki**, K. Mori, M. Matsui, and T. Hiraoka**

Department of Agricultural Chemistry, The University of Tokyo
Bunkyo-ku, Tokyo, 113, Japan

(Received in Japan 29 December 1971; received in UK for publication 18 January 1972)

The Grayanotoxins¹⁾ which are tetracyclic diterpenoids with the perhydroazulene skeleton are well known as the toxic substances obtained from Leucothoe grayana Max. and up until now many related compounds have been isolated²⁾. Solvolysis of a steroidal compound was attempted for the synthesis of this hydroazulene skeleton by Okuno and Matsumoto³⁾. In the present study we adapted the photochemical rearrangement which was found in Santonin by Barton⁴⁾ to the 2-formyldienones 12 and 12' to obtain the grayanotoxin skeleton, (e.g., A-B).

^{*} Diterpenoid Total Synthesis-XVIII. Part XVII, K. Mori, K. Saeki, and M. Matsui, Agr. Biol. Chem., 35, 956 (1971).

^{**} Present address: Central Research Laboratories, Sankyo Co., Ltd.,
Hiromachi, Shinagawa-ku, Tokyo, 140, Japan.

The racemic diketone $\underline{2}$, mp 146-148°, $\sqrt{\frac{\text{nujol}}{\text{max}}}$ 1770, 1730 cm⁻¹, having an oxygen function in the A ring of the kaurene skeleton, was newly synthesized through an ordinary route in 13 steps in ca 7% overall yield from the racemic ketone $\underline{1}^{5}$. Grignard reaction of this diketone $\underline{2}$ using MeMgI yielded a β -hydroxy ketone ($\underline{3}$) and its C-16 epimer ($\underline{4}$) in 79% and 8% yield, respectively, which were separated by recrystallization and chromatography on alumina. By hydrolysis with AcOH-H₂O(2:1) $\underline{3}$ afforded the diol $\underline{5}$, mp 215-216°, in 98% yield. Oxidation of $\underline{5}$ using Jones reagent gave the diketone $\underline{6}$, mp 189-190°, in 90% yield. After reduction of $\underline{4}$ using Li-NH₃/NH₄Cl, the resulting oily diol was treated with MeCHO-anhydrous ZnCl₂ at $\underline{5}^{\circ}$ for 15 hr to yield both the THP ether $\underline{7}$, mp 162-165°, with no absorption band for hydroxyl group, and the alcohol $\underline{8}$, mp 157-159°, which was easily converted to $\underline{7}$ and revealed NOE between the C-10 methyl group and C-14 hydrogen, and no coupling between the hydrogens at C-14 and C-13.

The diketone 6 was dehydrogenated using 2,3-dichloro-5,6-dicyanobenzoquinone(DDQ)⁶⁾ in dioxane to produce the dienone 9, mp 175-176°, $\lambda_{\text{max}}^{\text{EtOH}}$ 239.5 nm(ϵ =15500), $\lambda_{\text{max}}^{\text{nujol}}$ 3420, 1740, 1660, 1630, 1604 cm⁻¹, $\lambda_{\text{ppm}}^{\text{CDCl}}$ 3 1.21 (CH₃, s), 1.29(CH₃, s), 6.08 (1H, m), 6.17(1H, dd, J=2, 10 Hz), 7.05 (1H, d, J=10 Hz), in 53% yield. The dienone 9 was treated with Li-NH₃/NH₄C1 to give the enone 10 and C-14 epimer 10' (ca 1:2) in 79% yield⁷⁾, which did not afford an ethylidene compound corresponding to 7. A mixture of 10 and 10' was converted to formyl enones with HCO₂Et-NaOMe in 87% yield. A small part of this mixture was separated by chromatography on silica gel to give 11, mp 217-222°, $\lambda_{\text{ppm}}^{\text{d}} = \lambda_{\text{DMSO}}^{\text{DMSO}} = \lambda_{\text{cl}} = \lambda_{\text{cl}}^{\text{d}} = \lambda_{\text{cl}}^{\text{DMSO}} = \lambda_{\text{cl}} = \lambda_{\text{cl}}^{\text{d}} = \lambda_{\text{cl}}^{\text$

A mixture of $\underline{12}$ and $\underline{12}$ ' in aqueous acetic acid (45%) was irradiated with an ultraviolet lamp (Hanovia, 450 W), and the crude photo-products were treated with aq. $K_2\text{CO}_3$ according to Caine's method⁹⁾ to furnish crystalline

THPO H
$$\frac{1}{H}$$
 $\frac{2}{2}$ $\frac{2}{2}$ $\frac{X=<_{H}^{OTHP}}{2}$ $\frac{OTHP}{2}$ $\frac{5}{2}$ $\frac{X=<_{H}^{OTHP}}{2}$ $\frac{6}{4}$ $\frac{X=}{4}$ $\frac{7}{4}$ $\frac{R=}{4}$ $\frac{THP}{2}$ $\frac{8}{4}$ $\frac{R=}{4}$ $\frac{H}{2}$ $\frac{9}{4}$

compounds which were separated by thick layer chromatography and fractional crystallization to give two crystalline products 13, and 14 (ca 3:1) in 12% yield; the ether 13, mp 225-226°, $V_{\text{max}}^{\text{KBr}}$ 3380, 1690, 1618 cm⁻¹, $\lambda_{\text{max}}^{\text{Et0H}}$ 232 nm (ϵ =14100), M⁺ 288, $\delta_{\text{ppm}}^{\text{d}_{5}-\text{pyridine}}$ 1.45(CH₃, s), 1.48 (CH₃, s), 2.06(C-2 H, dd, J=4.8, 18 Hz), 2.59(C-2 H, dd, J=6, 18 Hz), 3.01(C-1 H, ddd, J=6, 4.8, 1.8 Hz), 4.42(C-14 H, d, J=5 Hz, coupling with C-13 H at δ_{max} 2.05), 5.94(C-4 H, d, J=1.8 Hz), and the diol 14, mp 250-252.5°(decomp), $V_{\text{max}}^{\text{KBr}}$ 3380, 3320, 1656, 1623, 1564 cm⁻¹, M⁺ 288, $\lambda_{\text{max}}^{\text{Et0H}}$ 306.5 nm(ϵ =17900), $\delta_{\text{ppm}}^{\text{d}_{5}-\text{pyridine}}$ 1.80(CH₃, s), 2.07(CH₃, s), 3.90(C-14 H, d, J=3 Hz, coupling with C-14 OH, this changes to a singlet on addition of D₂0), 5.56(C-16 OH, bs), 5.94(C-14 OH, d, J=3 Hz), 6.02(C-4 H, J \lesssim 1, coupling with C-6 H at δ_{ca} 2.64). These data indicate that the compounds 13 and 14 have the hydroazulene skeleton.

<u>Acknowledgement</u>: We thank Mr. H. Kuwano of Sankyo Co. for nmr decoupling experiments and NOE measurements.

References

- 1) S. Takei and S. Miyazima, J. Agr. Chem. Japan, 10, 1093 (1934).
- H. Hikino, T. Ohta, S. Koriyama, Y. Hikino, and T. Takemoto, Chem. Pharm. Bull., <u>19</u>, (6) 1289 (1971).
- 3) T. Okuno and T. Matsumoto, Tetrahedron Letters, 4077 (1969).
- 4) D. H. R. Barton, Helv. Chim. Acta, 42, 2604 (1959).
- 5) J. W. Cornforth and Sir R. Robinson, J. Chem. Soc., 1855 (1949).
- 6) D. Walker and J. D. Hiebert, Chem. Rev., 67, 153 (1967).
- 7) R. E. Schaub and M. J. Weis, Chem. & Ind., 2003 (1961).
- 8) J. A. Edwards, M. C. Calzada, L. C. Ibanez, M. E. Cabezas Rivera, R. Urquiza, L. Cardona, J. C. Orr, and A. Bowers, J. Org. Chem., 29, 3481 (1964).
- 9) D. Caine and J. F. DeBardeleben, Jr., Tetrahedron Letters, 4585 (1965).